Mesoporous Li3VO4/C Submicron‐Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High‐Power Lithium‐Ion Batteries
نویسندگان
چکیده
Despite the enormous efforts devoted to high-performance lithium-ion batteries (LIBs), the present state-of-the-art LIBs cannot meet the ever-increasing demands. With high theoretical capacity, fast ionic conductivity, and suitable charge/discharge plateaus, Li3VO4 shows great potential as the anode material for LIBs. However, it suffers from poor electronic conductivity. In this work, we present a novel composite material with mesoporous Li3VO4/C submicron-ellipsoids supported on rGO (LVO/C/rGO). The synthesized LVO/C/rGO exhibits a high reversible capacity (410 mAh g-1 at 0.25 C), excellent rate capability (230 mAh g-1 at 125 C), and outstanding long-cycle performance (82.5% capacity retention for 5000 cycles at 10 C). The impressive electrochemical performance reveals the great potential of the mesoporous LVO/C/rGO as a practical anode for high-power LIBs.
منابع مشابه
Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.
Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker age...
متن کاملPhotothermally reduced graphene as high-power anodes for lithium-ion batteries.
Conventional graphitic anodes in lithium-ion batteries cannot provide high-power densities due to slow diffusivity of lithium ions in the bulk electrode material. Here we report photoflash and laser-reduced free-standing graphene paper as high-rate capable anodes for lithium-ion batteries. Photothermal reduction of graphene oxide yields an expanded structure with micrometer-scale pores, cracks,...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملSilicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxyc...
متن کاملHigh quality graphitized graphene as an anode material for lithium ion batteries.
High quality graphitized graphene has been successfully synthesized by solid-exfoliation of graphite and a subsequent wet chemical process. The as-obtained graphene exhibits charge-discharge behaviour quite different from that of reduced graphene oxide and shows enhanced cycling and rate performance compared with commercial mesocarbon microbeads (MCMBs) for lithium ion batteries.
متن کامل